

TETRAHEDRON

Tetrahedron 57 (2001) 2717-2728

Synthetic studies on kinamycin antibiotics: elaboration of a highly oxygenated D ring

Takuya Kumamoto,^a Nobutaka Tabe,^a Kentaro Yamaguchi,^b Hiroshi Yagishita,^a Hiromichi Iwasa^a and Tsutomu Ishikawa^{a,*}

> ^aFaculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan ^bChemical Analysis Center, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan

> > Received 4 January 2001; accepted 31 January 2001

Abstract—The synthesis of the model compound of kinamycin antibiotics, which possesses correct relative configurations at C1–C4 on the D ring, is reported in detail. The key steps involved a Diels–Alder reaction of indenone (12) and a Danishefsky-type diene (13), and stereoselective construction of a tetraoxygenated D ring. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Kinamycins were isolated from the culture broth of Streptomyces murayamaensis sp. nov. Hata et Ohtani by Omura et al.¹ in 1970.² These antibiotics are strongly active against gram-positive bacteria but less against gramnegative ones. The structures had been characterized as benzo[b]carbazoloquinone N-cyanamides (1) with a highly oxygen-functionalized D ring by spectroscopic means, chemical reactions³ and X-ray crystallographic analysis. On biosynthetic studies for kinamycins, Gould et al.⁵ reported the isolation of dehydrorabelomycin (3) and prekinamycin (now called isoprekinamycin⁶) from S. murayamaensis as minor metabolites, the former between which was shown to be a precursor by the incorporation of deuterated 3 into kinamycins. The latter metabolite was also supposed to be a precursor, and the same benzo[b]carbazoloquinone skeleton as 1 was proposed for its structure such as 4 by the resemblance of the spectral data to those of kinamycins.⁷

Problems still remained for the determination of the substituent pattern at 11 position⁸ (atoms X and Y in 1). The reported data of ¹³C NMR (δ_C 78.5 ppm)⁹ for *N*-cyanamide structures of kinamycins poorly agreed with those of *N*-cyanoindoloquinones (δ_C 104.7 ppm for **6**, 103.6 ppm for **7**).¹⁰ Furthermore, the compound **4** was synthesized by Echavarren et al.,¹¹ however, it was not identical with so-called prekinamycin isolated by Gould et al.⁵ Thus, in 1994, Gould et al.¹² revised the *N*-cyanamide structures (**1** for kinamycins, **4** for so-called prekinamycin) to diazonium ones (**2** for kinamycins, **8** for so-called prekinamycin) by the re-examination of X-ray crystallographic analysis of (+)- α -methylbutyrate of kinamycin D. At the same time, Dmitrienko et al.¹³ independently reported the revision of the structures of kinamycins and so-called prekinamycin based on an alternative synthesis of a compound **5**, and finally reached to the same conclusion that Gould et al. proposed.

However, in spite of the accepted structures 2 for kinamycins, Gould has doubted the diazonium structure 8 for so-called prekinamycin due to some discrepancies between a synthetic compound 8 and so-called prekinamycin.¹⁴ Quite recently, Proteau, Gould and Dmitrienko et al.⁶ revised the structure of so-called prekinamycin from benzo[*b*]fluorene skeleton 8 to benzo[*a*]fluorene one 9 based on precise examination of spectral data of a model compound with the latter skeleton. Further, they proposed to name so-called prekinamycin isolated by Gould et al. as isoprekinamycin and a compound with the formula 8 as prekinamycin, respectively.

Thus, there have been some confusion on structures of kinamycin derivatives. Therefore, it should be important to determine the structure of kinamycins by the synthesis of the compounds with the structure **2**. We first planned the stereoselective synthesis of a model compound **10** as shown in Scheme 1, in which Diels–Alder reaction between indenone **12** and Danishefsky diene **13** was involved as a key step for the elaboration of a highly oxygenated cyclohexene ring.¹⁵ In this paper, we in detail report the first successful construction of a 3,4,5,6-tetraoxygenated cyclohexene ring with a correct relative configuration (*cis,trans,trans*) in kinamycin skeletons (Fig. 1).¹⁶

Keywords: kinamycins; antibiotics; Diels–Alder reaction; indenone; stereo-selective dihydroxylation.

^{*} Corresponding author. Tel.: +81-43-290-2910; fax: +81-43-290-2910; e-mail: benti@p.chiba-u.ac.jp

Figure 1. Proposed structures of kinamycins (1, 2) and related compounds (3–9).

Scheme 1. Retrosynthesis of 10.

2. Results and discussion

Indenone **12** was prepared from indanone 14^{17} by dehydrosilylation of the corresponding silyl enol ether 15^{18} in palladium acetate [Pd(OAc)₂]-*p*-benzoquinone system.¹⁹ Trials for the preparation of **12** with other procedures, such as dehydrobromination of α -bromoketone and thermal decompositions of α -sulfoxides, resulted in formation of complex mixtures. Diels–Alder reaction of **12** and diene 13^{20} by refluxing in benzene proceeded smoothly to afford *endo* adduct **11**. The relative configuration of **11** was determined by NOE enhancements (Fig. 2). Trial for the

Figure 2. Selected NOE enhancements of 11.

Scheme 2. Synthesis of α -hydroxyketone 16. (a) TMSCI, Et₃N, DMF, 60°C, 16 h; (b) Pd(OAc)₂, *p*-benzoquinone, CH₃CN, rt, 5 h; (c) 13, benzene, reflux, 2 h; (d) *m*-CPBA, Na₂HPO₄, CH₂Cl₂, 0°C, 3 h, and then rt, 5 h.

Figure 3. X-Ray crystallography of 16.

Scheme 3. Synthesis of diketal 22. (a) CSA, CH_2Cl_2 , 0°C, 10 min; (b) O_2 (1 atm), KF, DMSO, rt, 2 h; (c) TMSOTF, Et_3N , CH_2Cl_2 , 0°C, 10 min; (d) (i) OsO₄, NMO, THF-H₂O (20:1), 0°C, 1 h, and then rt, 12 h; (ii) 10% HCl, CH_3OH , rt, 2 min; (e) DIBAL-H, THF, -78°C, 1 h; (f) 2-methoxypropene, CSA, DMF, rt, 2 h.

diastereoselective epoxidation of **11** with *m*-chloroperbenzoic acid (*m*-CPBA) for introduction of an oxygen function into the C2 position²¹ gave α -hydroxyketone **16**. However, X-ray crystallographic analysis²² showed that the oxidation occurred at the convex face to produce an undesired *trans* system between C1–C2 positions (Scheme 2, Fig. 3).

Desilylation of **11** under an acidic condition gave enone **17**. A doubly activated position at C9a in **17** was found to be

easily oxygenated by molecular oxygen (O₂). Thus, treatment of **17** in dimethylsulfoxide (DMSO) under O₂ atmosphere in the presence of potassium fluoride (KF)²³ afforded γ -hydroxyenone **18** in 63% yield from **12**. The position of the hydroxy group introduced in **18** was determined by the observation of a cross peak between H-4a ($\delta_{\rm H}$ 3.92 ppm) and C-9a ($\delta_{\rm C}$ 78.5 ppm) in the HMBC experiments. The enone **18** was converted to the corresponding silyl dienol ether **19**, which was hydroxylated by a catalytic amount of osmium tetroxide (OsO₄) in the presence of *N*-methylmorpholine *N*-oxide (NMO) followed by acidic work-up to afford a 5:1 mixture of 1,3-diols 20α and 20β . The mixture was subjected to the reduction with diisobutylaluminum hydride (DIBAL-H) in tetrahydrofuran (THF) at -78° C followed by recrystallization from ethanol to give tetrol **21** derived from a major component. A desired stereochemical relationship at C3 and C4 of **21** was confirmed by NOE experiments of the corresponding diketal **22** (Scheme 3, Fig. 4).

Kishi et al.²⁴ have proposed that dihydroxylation in allyl ether functions with OsO_4 is generally controlled by configuration at the allylic position. This could not be simply

Figure 4. Selected NOE enhancements of 22.

Scheme 4. Synthesis of diol 23 and tetrol 25. (a) OsO_4 , NMO, THF-H₂O (8:1), 0°C, 1 h, and then rt, 24 h; (b) 2-methoxypropene, CSA, DMF, rt, 2 h; (c) OsO_4 , NMO, THF-H₂O (20:1), rt, 18 h.

Scheme 5. Synthesis of triol 27. (a) TBSCl, imidazole, DMF, rt, 5 h, and then 50° C, 2.5 h; (b) OsO₄, pyridine, 0° C, 1 h, and then rt, 24 h.

Figure 6. Proposed mechanisms for dihydroxylation of 22 (a) and 26 (b).

applied to the diastereoselectivity in dihydroxylation of **22** with OsO_4 because of the presence of two allylic alcohol units (C3 and C9a) in **22**, however, we expected the dihydroxylation from the convex face, as in the case of **11**, to produce a pentaoxygenated cyclohexane ring with correct *cis,trans,trans*configuration at C1 to C4. Treatment of **22** with OsO_4 -NMO system gave diol **23**, the undesired stereochemistry of which was shown by X-ray crystallography (Fig. 5). The same diastereoselectivity was also observed even in the dihydroxylation of a less hindered monoketal **24** (Scheme 4).^{25,26} These dihydroxylations from concave sites may be caused by the significant shield of convex sites by a C9a–O bond in more planer conformation due to a ketal bridge between C3–C4 as shown in Fig. 6a.

Alternation of a protecting group from a cyclic functionality to an acyclic and a bulky one, such as *tert*-butyldimethylsilyl (TBS) group, was expected to greatly change a conformation. Protection of tetrol **21** with *tert*-butylchlorodimethylsilane (TBSCI) gave tri-TBS ether **26**. Whereas large coupling constants among H-3, H-4 and H-4a $(J_{3,4}=8.3 \text{ Hz}, J_{4,4a}=11.6 \text{ Hz})$ were observed in diketal **22**, in which oxygen functions at C3 and C4 should be fixed in diequatorial positions due to a ketal ring formation, a small coupling constant (J=3.7 Hz) between H-3 and H-4 and no coupling between H-4 and H-4a in **26** indicated

Figure 7. X-Ray crystallography of 27. Alkyl groups on TBS were omitted for clarity.

diaxial orientation of the OTBS groups at C3 and C4. In this situation, the concave face of **26** would be severely shielded by an axial C3-OTBS group and C9-H in the boat-like conformation (Fig. 6b). Thus, treatment of tri-TBS ether **26** with stoichiometric amount²⁷ of OsO₄ in pyridine afforded triol **27** with a desired relative configuration,²⁸ which was confirmed by the X-ray crystallography (Scheme 5, Fig. 7).

Selective ketal formation between C1- and C2-OH of triol

27 followed by partial desilylation with an equimolar amount of tetrabutylammonium fluoride (TBAF) afforded diol 29 as only one isomer. The structure of 29 was determined by the X-ray crystallography (Fig. 8). Oxidation of 29 with pyridinium dichromate (PDC) gave α -hydroxyketone 30, which was converted to the corresponding xanthate 31 by treatment with carbon disulfide (CS₂) and iodomethane (CH₃I). Pyrolysis of 31 under vacuum smoothly proceeded to yield a tetrahydrofluorenone system 32. The enone 32

Scheme 6. Synthesis of diazo compound 34. (a) 2,2-dimethoxypropane-acetone (5:1), p-TsOH·H₂O, 60°C, 19 h; (b) TBAF, THF, 0°C, 15 min; (c) PDC, CH₂Cl₂, rt, 24 h; (d) (i) NaH, THF, rt, 1 h, (ii) CS₂, rt, 1 h, (iii) CH₃I, rt, 1.5 h; (e) 300°C, 20 mmHg (Kugelrohr), 20 min; (f) NH₂NH₂·H₂O, EtOH, reflux, 3 h; (g) Ag₂O, Et₂O, then KOH in CH₃OH, 0°C, 1 h, and then rt, 2 h.

Figure 8. X-Ray crystallography of 29. Alkyl groups on TBS were omitted for clarity.

was treated with hydrazine hydrate in ethanol to afford hydrazone **33** as (*E*)- and (*Z*)-isomers at a ratio of ca. 1:1, which were easily isomerized each other to give ca. 1:1 mixtures. Conversion of a ca. 1:1 mixture of **33** to a diazo system was successfully achieved with silver (I) oxide (Ag₂O) in the presence of potassium hydroxide (KOH)²⁹ to give a desired 9-diazotetrahydrofluorene **34** with correct stereochemistries at C1–C4 (Scheme 6). The absorption at 2067 cm⁻¹ in the IR spectrum and the resonance at 66.1 ppm in the ¹³C NMR of **34** are in the range for those of the typical diazo compounds.³⁰

3. Conclusions

In conclusion, we have succeeded in elaboration of highly oxygenated D ring with correct stereochemistries for kinamycin skeletons. Currently our efforts continue to improve ineffective steps and to complete the enantioselective total synthesis of kinamycins.

4. Experimental

4.1. General

All melting points were measured on a micro melting-point hot stage (Yanagimoto) and uncorrected. IR spectra were recorded on a JASCO FT/IR-300E spectrophotometer. ¹H NMR spectra were recorded in CDCl₃ on JEOL JNM-GSX400A (400 MHz), -GSX500A (500 MHz) or -ECP600 (600 MHz), using tetramethysilane (0.00 ppm) or residual chloroform (CHCl₃) (7.26 ppm) as an internal standard unless stated otherwise. ¹³C NMR spectra were recorded on JEOL JNM-GSX500A (125 MHz) or -ECP600 (150 MHz), using the middle resonance of CDCl₃ (77.0 ppm) as an internal standard. EIMS were recorded on a JEOL Automass with direct inlet or a Hewlett Packerd 5890 Series II Gas Chromatograph and 5971A Mass Selective Detector with GC-MS. FABMS were recorded on a JMS-HX110 with *m*-nitrobenzyl alcohol as a matrix. Silica gel (Fuji Silysia FL100D) was used for column chromatography. Dichloromethane (CH_2Cl_2) was distilled from phosphorus pentoxide (P_2O_5) before use. Chlorotrimethylsilane (TMSCl), N.N-dimethylformamide (DMF) and acetonitrile (CH₃CN) were distilled from calcium hydride (CaH₂). Pd(OAc)₂ was purified according to the reported procedure.³¹ p-Benzoquinone was recrystallized from benzene. Organic extract was dried over Na₂SO₄ before evaporation.

4.1.1. 7-Benzyloxy-3-trimethylsilyloxyindene (15). A mixture of 4-benzyloxy-1-indanone (4.00 g, 16.8 mmol), TMSC1 (3.20 mL, 25.2 mmol) and triethylamine (5.36 mL, 38.4 mmol) in DMF (40 mL) was stirred at 60°C for 16 h under N₂. After addition of saturated NaHCO₃ aq (100 mL), the whole was extracted with *n*-hexane (3×50 mL). The combined organic layer was successively washed with cold 5% HCl (1×30 mL), saturated NaHCO₃ aq (1×30 mL), H₂O (1×30 mL) and brine (1×30 mL), and evaporated to give **15** as an orange oil (5.41 g), which was used to the next step without further purification. IR ν (CHCl₃, cm⁻¹): 1610, 1580. ¹H NMR (500 MHz) δ : 0.30

(9H, s, TMS), 3.28 (2H, d, J=2.4 Hz, 1-H₂), 5.16 (2H, s, PhC H_2 O), 5.44 (1H, t, J=2.4 Hz, 2-H), 6.81 (1H, d, J=8.1 Hz, 6-H), 7.03 (1H, d, J=7.3 Hz, 4-H), 7.25 (1H, dif. t, J=7.5 Hz, 5-H), 7.32 (1H, d, J=7.4 Hz, 4'-H), 7.39 (2H, t, J=7.4 Hz, 3'-, 5'-H), 7.45 (1H, d, J=7.4 Hz, 2'-, 6'-H).

4.1.2. 4-Benzyloxy-1-indenone (12). A solution of 15 (5.41 g, 17.4 mmol) in CH₃CN (20 mL) was added to a solution of Pd(OAc)₂ (1.88 g, 8.39 mmol) and p-benzoquinone (907 mg, 8.39 mmol) in CH₃CN (60 mL) under nitrogen (N₂) and the mixture was stirred at room temperature (rt) for 2 h. After further addition of Pd(OAc)₂ (950 mg, 4.23 mmol), the mixture was stirred at rt for 3 h. AcOEt (80 mL) was added and precipitates were filtered off through Celite pad. Evaporation of the AcOEt solution followed by purification by column chromatography (nhexane-AcOEt=30:1) gave 12 as an orange oil (2.54 g, 64% in 2 steps). IR ν (CHCl₃, cm⁻¹): 1700, 1615, 1600. ¹H NMR (500 MHz) δ: 5.14 (2H, s, PhCH₂O), 5.78 (1H, d, J=5.8 Hz, 2-H), 6.99 (1H, d, J=8.6 Hz, 5-H), 7.09 (1H, d, J=7.0 Hz, 7-H), 7.19 (1H, dd, J=8.6, 7.0 Hz, 6-H), 7.30-7.45 (5H, m, Ar-H), 7.80 (1H, d, J=5.8 Hz, 3-H). EIMS *m*/*z*: 236 (M⁺, 8.3%), 91 (100%).

4.1.3. (±)-(1S,4aS,9aS)-5-Benzyloxy-1-methoxy-2-methyl-1,4,4a,9a-tetrahydro-3-trimethylsilyloxy-9-fluorenone (11). A solution of 12 (2.12 g, 8.97 mmol) and 13 (4.01 g, 21.5 mmol) in dry benzene (20 mL) was refluxed for 2 h under argon (Ar) and the solvent was evaporated. The excess of 13 was distilled off under reduced pressure $(110^{\circ}C, 20 \text{ mmHg})$ to give **11** (3.92 g) as an orange oil, which was used to the next step without further purification. IR ν (neat, cm⁻¹): 1717, 1676. ¹H NMR (500 MHz) δ : 0.14 (9H, s, TMS), 1.77 (3H, d, J=2.5 Hz, 2-CH₃), 2.55 (1H, ddd, J=14.9, 10.8, 2.5 Hz, 4-H), 2.85 (1H, dd, J=14.9, 7.8 Hz, 4-H), 2.91 (1H, dd, J=8.8, 4.6 Hz, 9a-H), 3.10 (3H, s, OCH₃), 3.71 (1H, br ddd, J=10.8, 8.8, 7.6 Hz, 4a-H), 4.38 (1H, d, J=4.6 Hz, 1-H), 5.10, 5.13 (each 1H, d, J=11.2 Hz, PhCH₂O), 7.10 (1H, d, J=7.8 Hz, 6-H), 7.31-7.46 (7H, m, 7-, 8-, Ar-H).

4.1.4. (±)-(1*S*,2*R*,4a*S*,9a*S*)-5-Benzyloxy-1,2,3,4,4a,9a-hexahydro-2-hydroxy-1-methoxy-2-methyl-3,9-fluorenedione (16). A solution of *m*-CPBA (80%, 78 mg, 0.36 mmol) in CH_2Cl_2 (0.5 mL) was added to a suspension of 11 (153 mg, 0.36 mmol) and Na₂HPO₄ (81 mg, 0.57 mmol) in CH₂Cl₂ (1 mL) and the mixture was stirred at 0°C for 3 h and then at rt for 5 h. After addition of 10% Na₂SO₃ aq (5 mL), the whole was extracted with AcOEt (3×10 mL). The combined organic layer was washed with H₂O (1×10 mL) and brine (1×10 mL) and evaporated. Purification of the residue by column chromatography (*n*-hexane-AcOEt=1:1) gave 16 as colorless needles (78 mg, 61%, 2 steps from 12), mp 180–183°C, which were recrystallized from ethanol. IR ν (Nujol, cm⁻¹): 3377, 1721, 1687. ¹H NMR (500 MHz) δ : 1.42 (3H, s, CH₃), 2.31 (1H, br s, OH), 2.77 (1H, dd, J=14.6, 12.6 Hz, 4-H), 3.30 (1H, dd, J=14.6, 6.0 Hz, 4-H), 3.32 (1H, dd, J=8.2, 4.4 Hz, 9a-H), 3.42 (3H, s, OCH₃), 3.88 (1H, ddd, J=12.6, 8.2, 6.0 Hz, 4a-H), 4.14 (1H, d, J=4.4 Hz, 1-H), 5.15, 5.18 (each 1H, d, J=12.2 Hz, PhCH₂O), 7.11 (1H, dd, J=8.0, 0.9 Hz, 6-H), 7.31–7.47 (7H, m, 7-, 8-, Ar–H). EIMS m/z: 366 (M⁺,

3.6%), 91 (100%). Anal. Calcd for $C_{22}H_{22}O_5$: C, 72.12; H, 6.05. Found: C,72.07; H, 6.17.

4.1.5. (±)-(4aS,9aS)-5-Benzyloxy-2-methyl-3,4,4a,9a-tetrahydro-3,9-fluorenedione (17). Camphorsulfonic acid (CSA) (431 mg, 1.85 mmol) was added to a solution of 11 (3.92 g, 9.28 mmol) in CH₂Cl₂ (40 mL) in one portion at 0°C and the mixture was stirred at 0°C for 10 min. After addition of saturated NaHCO3 aq (20 mL), the aqueous layer was separated and extracted with AcOEt (2×50 mL). The combined organic layer was washed with H₂O (1×20 mL) and brine (1×20 mL) and evaporated to give crude 17 as an orange oil (3.34 g), which was used to the next step without further purification. IR ν (neat, cm⁻¹): 1710, 1680. ¹H NMR (500 MHz) δ: 1.83 (3H, s, 2-CH₃), 2.61 (1H, dd, J=16.2, 9.2 Hz, 4-H), 3.10 (1H, dd, J=16.2, 7.3 Hz, 4-H), 3.56 (1H, m, 9a-H), 4.18 (1H, ddd, J=9.2, 7.3, 7.3 Hz, 4a-H), 5.15, 5.20 (each 1H, d, J=11.6 Hz, PhCH₂O), 6.85 (1H, dd, J=4.6, 1.9 Hz, 1-H), 7.15 (1H, d, J=6.9, 2.0 Hz, 6-H), 7.30 (7H, m, 7-, 8-, Ar-H). ¹³C NMR (125 MHz) δ: 16.2 (CH₃), 35.0 (C4a), 40.3 (C4), 49.5 (C9a), 70.3 (OCH₂Ph), 116.4 (C6), 117.4 (C8), 127.4 (C2', C6'), 128.3 (C4'), 128.8 (C3', C5'), 130.0 (C7), 136.0, 136.1, 136.4, 138.2 (C1), 144.5 (C2), 156.1 (C5), 198.0 (C=O), 202.5 (C=O). EIMS *m*/*z*: 318 (M⁺, 100%), 91 (94%).

4.1.6. (±)-(4aR,9aR)-6-Benzyloxy-9a-hydroxy-2-methyl-3,4,4a,9a-tetrahydro-3,9-fluorenedione (18). A solution of crude 17 (3.04 g, 9.55 mmol) and KF (553 mg, 9.52 mmol) in DMSO (30 mL) was stirred at rt for 2 h under O2. AcOEt (300 mL) was added and the whole was washed by H₂O (100 mL). The aqueous layer was extracted with AcOEt (2×100 mL). The combined organic layer was washed with H₂O (1×100 mL) and brine (1×100 mL) and evaporated. Purification of the residue by column chromatography (*n*-hexane-AcOEt=10:1-3:1) gave **18** as colorless prisms (1.72 g, 63%, 3 steps from 12), mp 128.5-129.5°C, which were recrystallized from ethanol. IR ν (Nujol, cm⁻¹): 3464, 1726, 1657. ¹H NMR (400 MHz) δ : 1.76 (3H, d, J=1.5 Hz, 2-CH₃), 3.02 (1H, dd, J=16.5, 7.3 Hz, 4-H), 3.15 (1H, br, OH, exchangeable), 3.62 (1H, dd, J=16.5, 3.0 Hz, 4-H), 3.92 (1H, ddd, J=7.3, 3.0, 1.5 Hz, 4a-H), 5.14, 5.18 (each 1H, d, J=11.5 Hz, PhCH₂O), 6.28 (1H, dif. t, J=1.5 Hz, 1-H), 7.18 (1H, m, 6-H), 7.35-7.50 (7H, m, 7-, 8-, Ar-H). EIMS m/z: 334 (M⁺, 4.3%), 91 (100%). Anal. Calcd for C₂₁H₁₈O₄: C, 75.43; H, 5.43. Found: C, 75.39; H, 5.27.

4.1.7. (\pm)-(4a*R*,9a*R*)-5-Benzyloxy-4a,9a-dihydro-2-methyl-3,9a-bis(trimethylsilyloxy)-9-fluorenone (19). Trimethylsilyl trifluoromethanesulfonate (0.63 mL, 3.24 mmol) was added to a solution of **18** (495 mg, 1.48 mmol) and triethylamine (0.50 mL, 3.59 mmol) in CH₂Cl₂ (5 mL) at 0°C. After 10 min, saturated NaHCO₃ aq (10 mL) was added. The aqueous layer was separated and extracted with AcOEt (2×20 mL). The combined organic layer was washed with H₂O (1×10 mL) and brine (1×10 mL) and evaporated. Purification of the residue by column chromatography (*n*-hexane–AcOEt=10:1) gave **19** as yellow prisms (616 mg, 87%), mp 122–124°C. IR ν (CHCl₃, cm⁻¹): 1720. ¹H NMR (400 MHz) δ : 0.10, 0.15 (each 9H, s, 2×TMS), 1.74 (3H, d, *J*=1.2 Hz, 2-CH₃), 3.99 (1H, d, *J*=6.1 Hz, 4a-H), 5.14, 5.17 (each 1H, d, *J*=12.2 Hz, PhC*H*₂O), 5.50 (1H, br s, 1-H), 5.67 (1H, d, *J*=6.1 Hz, 4-H), 7.15 (1H, d, *J*=8.0 Hz, 6-H), 7.26–7.48 (7H, m, 7-, 8-, Ar–H).

4.1.8. Dihydroxylation of the dienol 19 followed by desilylation. OsO₄ (17.8 mg, 7.0×10^{-2} mmol) was added to a suspension of 19 (671 mg, 1.40 mmol) and NMO (97%, 237 mg, 1.96 mmol) in THF-H₂O (20:1, 7 mL) at 0°C. After stirring at 0°C for 1 h and then at rt for 12 h, the mixture was concentrated to ca. 1 mL and partitioned with AcOEt (50 mL) and 10% Na₂SO₃ aq (50 mL). The aqueous layer was extracted with AcOEt (2×50 mL). The combined organic layer was washed with 10% Na₂SO₃ aq $(1\times50 \text{ mL})$, H₂O $(1\times50 \text{ mL})$ and brine $(1\times50 \text{ mL})$ and evaporated. The residue was dissolved in methanol (10 mL) and 10% HCl (0.5 mL) was added at rt. After 2 min, saturated NaHCO₃ aq (50 mL) was added and the whole was extracted with AcOEt $(3 \times 30 \text{ mL})$. The combined organic layer was washed with H_2O (1×30 mL) and brine (1×30 mL) and evaporated. Purification of the residue by column chromatography (*n*-hexane-AcOEt=5:1-1:1) gave a ca. 5:1 mixture of 20α and 20β as colorless prisms (314 mg, 64%), which were used to the next step without separation.

4.1.9. (±)-(**4***S*,**4a***S*,**9a***S*)-**5**-**Benzyloxy-4**,**9a**-**dihydroxy-2**-**methyl-3**,**4**,**4a**,**9a**-**tetrahydro-3**,**9**-**fluorenedione** (**20** α). A part of the mixture was recrystallized from AcOEt to give **20** α as colorless prisms, mp 140–142°C. IR ν (Nujol, cm⁻¹): 3376, 1702. ¹H NMR (500 MHz) δ : 1.91 (3H, d, *J*=1.2 Hz, 2-CH₃), 2.91 (1H, br s, 9a-OH, exchangeable), 3.52 (1H, d, *J*=3.7 Hz, 4-OH, exchangeable), 3.96 (1H, d, *J*=7.6 Hz, 4a-H), 4.50 (1H, dd, *J*=7.6, 3.7 Hz, 4-H), 5.17, 5.23 (each 1H, d, *J*=11.6 Hz, PhCH₂O), 6.61 (1H, s, 1-H), 7.23–7.50 (8H, m, Ar–H). EIMS *m*/*z*: 350 (M⁺, 0.3%), 91 (100%). Anal. Calcd for C₂₁H₁₈O₅: C, 71.99; H, 5.18. Found: C, 72.05; H, 5.31.

4.1.10. (±)-(4*R*,4a*S*,9a*S*)-5-Benzyloxy-4,9a-dihydroxy-2methyl-3,4,4a,9a-tetrahydro-3,9-fluorenedione (20β). Recrystallization of the mother liquor from CH₂Cl₂ gave **20**β as colorless prisms, mp 188–191°C. IR ν (Nujol, cm⁻¹): 3430, 3360, 1705, 1665. ¹H NMR (400 MHz) δ: 1.73 (3H, d, *J*=1.5 Hz, 2-CH₃), 3.22 (1H, br s, 9a-OH, exchangeable), 4.00 (1H, dd, *J*=5.1, 1.7 Hz, 4a-H), 4.61 (1H, d, *J*=11.5 Hz, 4-OH, exchangeable), 5.06 (1H, dd, *J*=11.5, 5.1 Hz, 4-H), 5.18, 5.22 (each 1H, d, *J*=11.0 Hz, PhCH₂O), 6.08 (1H, dq, *J*=1.5, 1.5 Hz, 1-H), 7.23–7.50 (8H, m, Ar–H). EIMS *m/z*: 350 (M⁺, 1.3%), 332 (2.9%), 91 (100%). Anal. Calcd for C₂₁H₁₈O₅: C, 71.99; H, 5.18. Found: C, 71.79; H, 5.17.

4.1.11. (±)-(3*S*,4*S*,4*aS*,9*R*,9*aS*)-5-Benzyloxy-2-methyl-3, 4,4a,9a-tetrahydro-3,4,9,9a-fluorenetetrol (21). DIBAL-H (1.0 M in hexane, 0.13 mL, 0.13 mmol) was added to a solution of a ca. 5:1 mixture of 20α and 20β (22 mg, 6.3×10^{-2} mmol) in THF (0.5 mL) at -78° C. After stirring at -78° C for 1 h, 10% HCl (3 mL) was added and the whole was extracted with AcOEt (3×5 mL). The combined organic layer was washed with H₂O (1×10 mL) and brine (1×10 mL) and evaporated. Recrystallization of the residue from ethanol gave 21 as colorless needles (16 mg, 72%), mp 208.5–210.5°C. IR ν (Nujol, cm⁻¹): 3430, 3371, 1592. ¹H NMR (500 MHz, CDCl₃–CD₃OD) δ : 1.86 (3H, s, 2-CH₃), 3.47 (1H, d, *J*=11.3 Hz, 4a-H), 3.52 (1H, dd, *J*=11.3, 7.3 Hz, 4-H), 4.26 (1H, d, *J*=7.3 Hz, 3-H), 4.99 (1H, s, 9-H), 5.10, 5.17 (each 1H, d, *J*=11.3 Hz, PhCH₂O), 5.62 (1H, s, 1-H), 6.92 (1H, d, *J*=8.2 Hz, 6-H), 7.07 (1H, d, *J*=7.3 Hz, 8-H), 7.30 (1H, dif. t, *J*=7.5 Hz, 7-H), 7.32–7.42 (5H, m, Ar–H). FABMS *m*/*z*: 335 [(MH)⁺]. Anal. Calcd for C₂₁H₂₂O₅: C, 71.17; H, 6.26. Found: C, 70.99; H, 6.06.

4.1.12. (±)-(3S,4S,4aS,9R,9aS)-5-Benzyloxy-3,4;9,9a-bis-(dimethylmethylenedioxy)-2-methyl-3,4,4a,9a-tetrahydrofluorene (22). A solution of 2-methoxypropene (95%, 0.10 mL, 0.99 mmol) in DMF (0.60 mL) was prepared. 21 $(22 \text{ mg}, 5.9 \times 10^{-2} \text{ mmol})$ and CSA $(2 \text{ mg}, 8.6 \times 10^{-3} \text{ mmol})$ were added to a part of the DMF solution (0.30 mL) and the mixture was stirred at rt for 2 h. After addition of AcOEt (20 mL), the whole was washed with saturated NaHCO₃ aq $(1 \times 15 \text{ mL})$. The aqueous layer was extracted with AcOEt $(2 \times 10 \text{ mL})$. The combined organic layer was washed with H_2O (1×10 mL) and brine (1×10 mL) and evaporated. Recrystallization of the residue from *n*-hexane gave 22 as colorless needles (22 mg, 86%), mp 151–155°C. IR ν (Nujol, cm⁻¹): 1592. ¹H NMR (400 MHz) δ : 0.84, 1.36, 1.48, 1.53 (each 3H, s, $4 \times CH_3$), 1.93 (3H, dd, J=1.2, 1.2 Hz, 2-CH₃), 3.27 (1H, dd, J=11.6, 8.3 Hz, 4-H), 3.91 (1H, d, J=11.6 Hz, 4a-H), 4.39 (1H, dq, J=8.3, 1.2 Hz, 3-H), 5.09, 5.19 (each 1H, d, J=11.9 Hz, PhCH₂O), 5.40 (1H, s, 9-H), 5.49 (1H, dq, J=1.2, 1.2 Hz, 1-H), 6.89 (1H, d, J=8.3 Hz, 6-H), 7.04 (1H, d, J=7.3 Hz, 8-H), 7.27-7.47 (4H, m, 7-, 3'-, 4'-, 5'-H), 7.62 (2H, d, J=7.3 Hz, 2'-, 6'-H). EIMS m/z: 435 [(M+1)⁺, 0.2%], 434 (M⁺, 0.3%), 91 (100%). Anal. Calcd for C₂₇H₃₀O₅: C, 74.63; H, 6.96. Found: C, 74.84; H, 7.00.

4.1.13. (±)-(1R,2S,3R,4R,4aS,9R,9aR)-5-Benzyloxy-3,4; 9,9a-bis(dimethylmethylenedioxy)-2-methyl-1,2,3,4,4a, **9a-hexahydro-1,2-fluorenediol** (23). OsO₄ (1.2 mg, 4.8×10^{-3} mmol) was added to a mixture of **22** (16 mg, 3.7×10^{-2} mmol) and NMO (97%, 6 mg, 5.0×10^{-2} mmol) in THF-H₂O (8:1, 0.5 mL) at 0°C. After stirring at 0°C for 1 h and then at rt for 24 h, AcOEt (10 mL) was added and the whole was washed with 10% Na₂SO₃ aq (1×10 mL). The aqueous layer was extracted with AcOEt (2×10 mL). The combined organic layer was washed with H₂O (1×10 mL) and brine (1×10 mL) and evaporated. Recrystallization of the residue from CH_2Cl_2-n -hexane gave 23 as colorless prisms (17 mg, 98%), mp 178–183°C. IR ν (Nujol, cm⁻¹): 3530, 3412. ¹H NMR (500 MHz) δ : 0.92, 1.31 (each 3H, s, 2×CH₃), 1.50 (9H, s, 3×CH₃), 2.37 (1H, s, 2-OH, exchangeable), 2.87 (1H, d, J=5.8 Hz, 1-OH, exchangeable), 3.63 (1H, d, J=9.8 Hz, 3- or 4a-H), 3.68 (1H, d, J=10.4 Hz, 3- or 4a-H), 3.78 (1H, d, J=5.8 Hz, 1-H), 3.79 (1H, dd, J=10.4, 9.8 Hz, 4-H), 5.10, 5.13 (each 1H, d, J=11.6 Hz, PhCH₂O), 5.70 (1H, s, 9-H), 6.87 (1H, d, J=8.2 Hz, 6-H), 7.06 (1H, d, J=7.3 Hz, 8-H), 7.23-7.30 (2H, m, 7-, 4'-H), 7.34 (2H, dif. t, J=7.7 Hz, 3'-, 5'-H), 7.57 (2H, dif. d, J=7.0 Hz, 2'-, 6'-H). EIMS m/z: 469 [(M+1)⁺, 0.1%], 468 (M⁺, 0.2%), 91 (100%). Anal. Calcd for C₂₇H₃₂O₇: C, 69.21; H, 6.88. Found: C, 68.81; H, 6.86.

4.1.14. (±)-(3*S*,4*S*,4*aS*,9*R*,9*aS*)-5-Benzyloxy-3,4-dimethylmethylenedioxy-2-methyl-3,4,4*a*,9*a*-tetrahydro-9,9*a*fluorenediol (24). A solution of 2-methoxypropene (95%, 0.10 mL, 0.99 mmol) in DMF (1 mL) was prepared. A part of the solution (0.5 mL) was added to a solution of **21** (83 mg, 0.24 mmol) and CSA (2.6 mg, 1.1×10^{-2} mmol) in DMF (3 mL) at rt. After stirring at rt for 2 h, saturated NaHCO₃ aq (10 mL) was added and the whole was extracted with AcOEt (3×20 mL). The combined organic layer was washed with H₂O (1×10 mL) and brine (1×10 mL) and evaporated. Purification of the residue by column chromatography (*n*-hexane-AcOEt=3:1-2:1) gave crystalline product (65 mg), 32 which was recrystallized from AcOEt to give **24** (34 mg, 37%) as colorless needles, mp 191–193°C, in addition to diketal **22** (23 mg, 22%). IR ν (Nujol, cm⁻¹): 3288, 1590. ¹H NMR (500 MHz) δ : 1.38, 1.54, 1.93 (each 3H, s, 3×CH₃), 2.35 (1H, br s, 9a-OH, exchangeable), 2.76 (1H, d, J=9.8 Hz, 9-OH, exchangeable), 3.45 (1H, dd, J=11.9, 8.6 Hz, 4-H), 3.71 (1H, d, J=11.9 Hz, 4-H), 4.40 (1H, br d, J=8.6 Hz, 3-H), 5.02 (1H, d, J=9.2 Hz, 9-H), 5.06, 5.20 (each 1H, d,)J=11.9 Hz, PhCH₂O), 5.57 (1H, br s, 1-H), 6.88 (1H, d, J=8.2 Hz, 6-H), 7.04 (1H, d, J=7.7 Hz, 8-H), 7.28 (2H, m, 7-, 4'-H), 7.36 (2H, d, J=7.3, 7.3 Hz, 3'-, 5'-H), 7.60 (2H, dif. d, J=7.3 Hz, 2'-, 6'-H). Anal. Calcd for C₂₄H₂₆O₅: C, 73.08; H, 6.64. Found: C, 72.74; H, 6.48.

4.1.15. (±)-(1S,2S,3S,4S,4aS,9S,9aS)-5-Benzyloxy-3,4-dimethylmethylenedioxy-2-methyl-3,4,4a,9a-tetrahydro-**1,2,9,9a-fluorenetetrol** (25). OsO₄ (1 mg, 3.9×10⁻³ mmol) was added to a mixture of 24 (11 mg, 2.8×10^{-2} mmol) and NMO (97%, 4.3 mg, 3.6×10⁻² mmol) in THF-H₂O (20:1, 0.2 mL) at 0°C. After stirring at rt for 6 h, NMO (97%, 4.3 mg, 3.6×10^{-2} mmol) and OsO_4 (1 mg, 3.9×10^{-3} mmol) were added. After stirring at rt for 12 h, AcOEt (10 mL) was added and the whole was washed with 10% Na_2SO_3 aq (1×10 mL). The aqueous layer was extracted with AcOEt (2×10 mL). The combined organic layer was washed with 10% Na₂SO₃ aq (1×10 mL), H₂O (1×20 mL) and brine (1×20 mL) and evaporated. Recrystallization of the residue from AcOEt-CH₂Cl₂ gave 25 as colorless needles (8 mg, 65% as 1/2 hydrate), mp 191–193°C. IR ν (Nujol, cm⁻¹): 3411, 3298. ¹H NMR (500 MHz) δ: 1.37, 1.51, 1.52 (each 3H, s, 3×CH₃), 2.10 (1H, br s, OH), 2.91 (1H, d, J=6.8 Hz, 1-OH, exchangeable), 3.52 (1H, s, 9a-OH, exchangeable), 3.53 (1H, d, J=10.8 Hz, 3- or 4a-H), 3.56 (1H, d, J=9.6 Hz, 3- or 4a-H), 3.76 (1H, dd, J=10.8, 9.6 Hz, 4-H), 3.88 (1H, d, J=6.8 Hz, 1-H), 5.07, 5.17 (each 1H, d, J=12.4 Hz, PhCH₂O), 5.69 (1H, d, J=4.4 Hz, 9-H), 6.85 (1H, d, J=8.4 Hz, 6-H), 7.03 (1H, d, J=7.2 Hz, 8-H), 7.24-7.26 (4H, m, 7-, 3'-, 4'-, 5'-H), 7.57 (2H, dif. d, J=7.2 Hz, 2'-, 6'-H). Anal. Calcd for $C_{24}H_{28}O_7 \cdot 1/2$ H₂O: C, 65.89; H, 6.68. Found: C, 66.07; H, 6.72.

4.1.16. (±)-(3*R*,4*S*,4*aS*,9*R*,9*aS*)-5-Benzyloxy-2-methyl-3, **4,4a,9a-tetrahydro-3,4,9-tris**(*tert*-butyldimethylsilyloxy)-**9a-fluorenol** (**26**). A mixture of **21** (93.5 mg, 0.26 mmol), TBSCl (199 mg, 1.32 mmol) and imidazole (126 mg, 1.85 mmol) in DMF (2 mL) was stirred at rt for 5 h and then at 50°C for 2.5 h under Ar. After addition of AcOEt (30 mL), the whole was washed with cold 5% HCl (2×10 mL), H₂O (1×20 mL) and brine (1×20 mL), and evaporated. Purification of the residue by column chromatography (*n*-hexane–AcOEt=30:1–20:1) gave **26** as a colorless oil (109 mg, 60%), IR ν (neat, cm⁻¹): 3511, 1595. ¹H NMR (500 MHz) δ : –0.26 (3H, s, CH₃), –0.05 (6H, s, 2×CH₃), -0.04, 0.18, 0.21 (each 3H, s, 3×CH₃), 0.53, 0.82, 0.98 (each 9H, s, 3×'Bu), 1.83 (3H, d, J=1.5 Hz, 2-CH₃), 3.46 (1H, s, 4a-H), 3.81 (1H, d, J=3.7 Hz, 3-H), 3.96 (1H, br, 9a-OH), 4.40 (1H, d, J=3.7 Hz, 4-H), 5.13 (1H, d, J=12.5 Hz, PhCH₂O), 5.16 (1H, s, 9-H), 5.17 (1H, d, J=12.5 Hz, PhCH₂O), 5.86 (1H, br s, 1-H), 6.67 (1H, d, J=8.2 Hz, 6-H), 6.73 (1H, d, J=7.6 Hz, 8-H), 7.07 (1H, dd, J=8.2, 7.6 Hz, 7-H), 7.30 (1H, dif. t, J=7.0 Hz, 4'-H), 7.35 (2H, dif. t, J=7.0 Hz, 3'-, 5'-H), 7.40 (2H, dif. d, J=7.4 Hz, 2'-, 6'-H). ¹³C NMR (125 MHz, CDCl₃) δ : -5.2, -5.12, -5.06, -4.7, -4.4, -4.2, 17.6, 17.8, 18.1, 22.5, 25.3, 25.7, 25.8, 56.8, 69.7, 71.5, 73.2, 76.3, 85.5, 111.0, 116.8, 127.4, 127.8, 128.3, 128.6, 130.1, 132.6, 134.8, 137.3, 143.8, 155.3. HRFABMS *m*/*z*: 735.3673 (Calcd for C₃₉H₆₄O₅Si₃K: 735.3699).

4.1.17. (±)-(1S,2S,3R,4S,4aR,9S,9aS)-5-Benzyloxy-1,2,3, 4,4a,9a-hexahydro-2-methyl-3,4,9-tris(*tert*-butyldimethylsilyloxy)-1,2,9a-fluorenetriol (27). OsO_4 (32 mg, 0.13 mmol) was added to a solution of 26 (80 mg, 0.11 mmol) in pyridine (1 mL) at 0°C. After stirring at 0°C for 1 h and then at rt for 24 h, NaHSO₃ aq (119 mg, 1.14 mmol in 0.2 mL) was added and the whole was extracted with AcOEt (3×15 mL). The combined organic layer was washed with saturated NaHCO₃ aq $(1 \times 10 \text{ mL})$, H_2O (1×10 mL) and brine (1×10 mL) and evaporated. Purification of the residue by column chromatography (n-hexane-AcOEt=20:1) gave 27 (73 mg, 91%) as colorless prisms, mp 132-133.5°C, which were recrystallized from ethanol. IR ν (Nujol, cm⁻¹): 3567, 3504. ¹H NMR (400 MHz) δ : -0.13, -0.11 (each 3H, s, 2×CH₃), 0.02 (9H, s, 3×CH₃), 0.21 (3H, s, CH₃), 0.50, 0.86, 0.88 (each 9H, s, 3×^tBu), 1.19 (3H, s, 2-CH₃), 2.90 (1H, br, OH, exchangeable), 3.25 (1H, s, OH, exchangeable), 3.33 (1H, br s, 1-H), 3.65 (1H, br s, 4a-H), 3.68 (1H, d, J=2.9 Hz, 3-H), 4.36 (1H, s, OH, exchangeable), 4.99 (1H, d, J=10.6 Hz, PhCH₂O), 5.00 (1H, s, 9-H), 5.05 (1H, d, J=10.6 Hz, PhCH₂O), 5.07 (1H, dd, J=2.9 Hz, 1.2 Hz, 4-H), 6.79 (1H, d, J=8.4 Hz, 6-H), 6.92 (1H, d, J=7.5 Hz, 8-H), 7.11 (1H, dif. t, J=7.9 Hz, 7-H), 7.34–7.36 (3H, m, 2'-, 4'-, 6'-H), 7.43-7.44 (2H, m, 3'-, 5'-H). FABMS m/z: 753 $[(MNa)^+]$. Anal. Calcd for C₃₉H₆₆O₇Si₃: C, 64.06; H, 9.10. Found: C, 64.17; H, 9.20.

4.1.18. (±)-(1R,2R,3R,4S,4aS,9R,9aR)-5-Benzyloxy-1,2dimethylethylenedioxy-1,2,3,4,4a,9a-hexahydro-2-methyl-3,4,9-tris(tert-butyldimethylsilyloxy)-9a-fluorenol (28). A mixture of 27 (77 mg, 0.11 mmol), 2,2-dimethoxypropane (0.8 mL, 6.5 mmol), acetone (0.2 mL, 2.72 mmol) and *p*-toluenesulfonic acid hydrate (0.5 mg, 2.6×10^{-3} mmol) was stirred at 60°C for 19 h. NaHCO3 powder (10 mg, 0.12 mmol) was added and the mixture was stirred at rt for 30 min and evaporated. Purification of the residue by preparative TLC (*n*-hexane-AcOEt=10:1) gave 28 as a colorless oil (64 mg, 78%). IR ν (CHCl₃, cm⁻¹): 3493. ¹H NMR (500 MHz) δ : -0.29, 0.00 (each 3H, s, CH₃), 0.11 (6H, s, 2×CH₃), 0.26, 0.28 (each 3H, s, 2×CH₃), 0.67, 0.91, 0.97 (each 9H, s, $3 \times^{t}$ Bu), 1.46 (3H, s, ketal CH₃), 1.50 (3H, s, 2-CH₃), 1.60 (3H, s, ketal CH₃), 3.63 (1H, d, J=3.1 Hz, 3-H), 3.70 [2H (1H with D₂O), br s, 4a-H, OH], 4.14 (1H, s, 1-H), 4.29 (1H, br d, J=3.1 Hz, 4-H), 5.18, 5.21 (each 1H, d, J=14.6 Hz, PhCH₂O), 5.24 (1H, s, 9-H), 6.61 (1H, d, J=8.3 Hz, 6-H), 6.75 (1H, d, J=7.7 Hz, 8-H), 7.03 (1H, dd, J=8.3, 7.7 Hz, 7-H), 7.26–7.37 (5H, m, Ar–H). ¹³C NMR (125 MHz) δ : -5.1, -4.8, -4.4, -3.6, -3.4, -2.8, 17.8, 18.1, 18.5, 25.7, 25.8, 25.9, 26.5, 26.8, 28.4, 52.0, 69.8, 75.0, 76.0, 78.7, 78.8, 81.5, 81.9, 107.6, 111.8, 117.1, 126.7, 127.6, 128.4, 128.6, 131.3, 137.5, 143.1, 155.6. HRFABMS *m/z*: 793.4266 (Calcd for C₄₂H₇₀O₇Si₃Na: 793.4327).

4.1.19. (±)-(1*R*,2*R*,3*S*,4*S*,4*aS*,9*R*,9*aS*)-5-Benzyloxy-3,4bis(tert-butyldimethylsilyloxy)-1,2-dimethylmethylenedioxy-1,2,3,4,4a,9a-hexahydro-2-methyl-9,9a-fluorenediol (29). TBAF (1 M in THF, 0.11 mL, 0.11 mmol) was added to a solution of **28** (28 mg, 3.6×10^{-2} mmol) in THF (0.5 mL) at 0°C under Ar. After stirring at 0°C for 15 min, H₂O (10 mL) and brine (5 mL) was added and the whole was extracted with AcOEt (3×20 mL). The combined organic layer was washed with H₂O (1×10 mL) and brine $(1 \times 10 \text{ mL})$ and evaporated. Purification of the residue by column chromatography (*n*-hexane-AcOEt=8:1) gave 29 as colorless needles (19 mg, 80%), mp 133–134°C, which were recrystallized from *n*-hexane. IR ν (CHCl₃, cm⁻¹): 3568, 1593. ¹H NMR (500 MHz) δ : -0.31, 0.00 (each 3H, s, 2×CH₃), 0.10 (6H, s, 2×CH₃), 0.56 (9H, br s, ^tBu), 0.89 (9H, s, ^tBu), 1.46, 1.50, 1.56 (each 3H, s, 3×CH₃), 3.01, 3.10 (each 1H, br, 2×OH, exchangeable), 3.56 (1H, s, 4a-H), 3.63 (1H, d, J=2.8 Hz, 3-H), 4.26 (1H, br s, 4-H), 4.34 (1H, s, 1-H), 5.08 (1H, br s, 9-H), 5.18, 5.21 (each 1H, d, J=15.2 Hz, PhCH₂O), 6.64 (1H, d, J=8.3 Hz, 6-H), 6.94 (1H, d, J=7.7 Hz, 8-H), 7.06 (1H, dif. t, J=8.0 Hz, 7-H), 7.26–7.47 (5H, m, Ar–H). FABMS *m*/*z*: 679 [(MNa)⁺], 657 $[(MH)^+]$. Anal. Calcd for C₃₆H₅₆O₇Si₂: C, 65.81; H, 8.59. Found: C, 65.57; H, 8.36.

4.1.20. (±)-(1*R*,2*R*,3*S*,4*S*,4*aS*,9*aR*)-5-Benzyloxy-1,2-dimethylmethylenedioxy-1,2,3,4,4a,9a-hexahydro-9a-hydroxy-2-methyl-9-fluorenone (30). PDC (98%, 335 mg, 0.87 mmol) was added to a solution of 29 (195 mg, 0.30 mmol) in CH₂Cl₂ (5 mL) at 0°C. After stirring at rt for 24 h, the mixture was diluted with diethyl ether (Et_2O) (20 mL). The precipitates were filtered off through Celite pad and washed with Et₂O. The filtrate and the washings were combined and evaporated. Purification of the residue by column chromatography (*n*-hexane–AcOEt=20:1) gave 30 as colorless prisms (78 mg, 40%), mp 121.5-123.5°C, which were recrystallized from Et_2O-n -hexane. IR ν (KBr, cm⁻¹): 3420, 1730. ¹H NMR (500 MHz) δ : -0.46, -0.06, 0.10, 0.12 (each 3H, s, 4×CH₃), 0.53, 0.90 (each 9H, s, 2×^tBu), 1.37, 1.50, 1.57 (each 3H, s, 3×CH₃), 3.06 (1H, br, OH, exchangeable), 3.61 (1H, s, 3-H), 4.34 (1H, d, J=3.4 Hz, 4-H), 4.64 (1H, s, 1-H), 5.25, 5.28 (each 1H, d, J=14.1 Hz, PhCH₂O), 6.99 (1H, d, J=8.0 Hz, 6-H), 7.19 (1H, dd, J=8.0 Hz, 7-H), 7.29-7.50 (6H, m, 8-, Ar-H). FABMS m/z: 655 [(MH)⁺]. Anal. Calcd for C₃₆H₅₄O₇Si₂: C, 66.02; H, 8.31. Found: C, 66.16; H, 8.34.

4.1.21. (\pm)-(1*S*,2*R*,3*R*,4*S*,4a*S*,9a*R*)-*O*-[5-Benzyloxy-3,4bis(*tert*-butyldimethylsilyloxy)-1,2-dimethylmethylenedioxy-1,2,3,4,4a,9a-hexahydro-2-methyl-9-oxo-9a-fluorenyl]-S-methyl dithiocarbonate (31). Solutions of CS₂ (0.10 mL, 1.66 mmol) in THF (1 mL) and of CH₃I (0.10 mL, 1.61 mmol) in THF (1 mL) were prepared. A solution of 30 (33 mg, 5.0×10^{-2} mmol) in THF (1.5 mL) was added to a suspension of NaH (60%, 10 mg, 0.25 mmol) in THF (0.5 mL) at 0°C and the whole was stirred at 0°C for 1 h. A part of the CS₂ solution (0.16 mL, 0.24 mmol) was added at 0°C. After stirring at 0° C for 1 h, a part of the CH₃I solution (0.16 mL, 0.23 mmol) was added at 0°C. After stirring at 0°C for 1.5 h, saturated NH₄Cl aq (10 mL) was added and the whole was extracted with AcOEt (3×10 mL). The combined organic layer was washed with H_2O (1×10 mL) and brine (1×10 mL) and evaporated. Purification of the residue by preparative TLC (n-hexane-AcOEt=20:1) gave **31** as a yellow oil (20 mg, 54%). IR ν (CHCl₃, cm⁻¹): 1726. ¹H NMR (500 MHz) δ : -0.11, -0.07, -0.03, 0.03 (each 3H, s, 4×CH₃), 0.71 (9H, br s, ^tBu), 0.85 (9H, s, ^tBu), 1.39, 1.54, 1.56 (each 3H, s, 3×CH₃), 2.50 (3H, s, SCH₃), 3.86 (1H, d, J=3.7 Hz, 3-H), 4.46 (1H, s, 4a-H), 4.56 (1H, s, 1-H), 4.80 (1H, dd, J=3.7 Hz, 1.8 Hz, 4-H), 5.14, 5.19 (each 1H, d, J=11.9 Hz, PhCH₂O), 7.10 (1H, d, J=8.0 Hz, 6-H), 7.19 (1H, dif. t, J=8.0 Hz, 7-H), 7.34–7.39 (6H, m, 8-, Ar–H). ¹³C NMR (125 MHz) δ : -4.8, -4.5, -4.34, -4.25, 18.1, 19.2, 23.8, 26.0, 26.1, 26.7, 27.4, 47.9, 70.6, 73.4, 79.5, 80.8, 82.1, 89.8, 109.2, 116.6, 118.1, 128.1, 128.5, 128.8, 129.5, 135.8, 136.9, 138.4, 155.8, 197.6, 211.2. HRFABMS *m*/*z*: 745.3124 (Calcd for C₃₈H₅₇O₇S₂Si₂: 745.3117).

4.1.22. (±)-(1R,2R,3R,4S)-5-Benzyloxy-3,4-bis(tert-butyldimethylsilyloxy)-1,2-dimethylmethylenedioxy-2-methyl-**1,2,3,4-tetrahydro-9-fluorenone** (32). 31 (17 mg, 2.3× 10^{-2} mmol) in Kugelrohr apparatus was heated at 300° C for 20 min under vacuum (20 mmHg) to leave 32 as a yellow oil (14 mg, 96%). IR ν (CHCl₃, cm⁻¹): 1708. ¹H NMR (500 MHz) δ : -0.06, 0.06 (each 3H, s, 2×CH₃), 0.12 (6H, s, $2 \times CH_3$), 0.71, 0.85 (each 9H, s, $2 \times {}^{t}Bu$), 1.32, 1.42, 1.45 (each 3H, s, 3×CH₃), 4.03 (1H, d, J=2.5 Hz, 3-H), 4.63 (1H, s, 1-H), 4.91 (1H, d, J=2.5 Hz, 4-H), 5.16, 5.20 (each 1H, d, J=12.8 Hz, PhCH₂O), 6.92 (1H, m, 6-H), 7.11-7.13 (2H, m, 7-, 8-H), 7.34-7.36 (5H, m, Ar–H). ¹³C NMR (125 MHz) δ : -4.7, -4.5, -3.9, -3.3, 17.9, 18.3, 25.0, 25.8, 25.9, 29.0, 29.9, 69.3, 70.9, 73.3, 75.5, 81.5, 111.3, 115.9, 119.5, 127.3, 128.2, 128.75, 128.80, 129.9, 130.7, 133.8, 136.3, 152.6, 155.9, 196.8. HRFABMS m/z: 659.3198 (Calcd for C₃₆H₅₂O₆Si₂Na: 659.3200).

4.1.23. (±)-(1R,2R,3R,4S)-5-Benzyloxy-3,4-bis(tert-butyldimethylsilyloxy)-1,2-dimethylmethylenedioxy-2-methyl-1,2,3,4-tetrahydro-9-fluorenohydrazone (33). Hydrazine hydrate (25 mg, 0.50 mmol) was added to a solution of 32 $(6.8 \text{ mg}, 1.1 \times 10^{-2} \text{ mmol})$ in ethanol (1 mL). After refluxing for 3 h, the solvent was evaporated. Purification of the residue by preparative TLC (*n*-hexane–AcOEt = 5:1) gave 33^{33} as geometrical isomers (less polar one: a yellow oil, 3.3 mg; more polar one: a yellow oil, 3.9 mg, totally in quant.). Less polar isomer: R_f : 0.56 (*n*-hexane-AcOEt=5:1). IR ν (neat, cm⁻¹): 3440, 3300, 3210. ¹H NMR (500 MHz) δ : -0.07, 0.02, 0.11, 0.12 (each 3H, s, 4×CH₃), 0.80, 0.81 (each 9H, s, $2 \times Bu$, 1.28, 1.46, 1.47 (each 3H, s, $3 \times CH_3$), 4.06 (1H, d, J=2.8 Hz, 3-H), 4.87 (1H, s, 1-H), 5.14 (1H, d, J=2.8 Hz, 4-H), 5.16, 5.22 (each 1H, d, J=13.1 Hz, PhCH₂O), 6.72 (1H, d, J=8.3 Hz, 6-H), 7.08 (1H, dif. t, J=8.0 Hz, 7-H), 7.26–7.39 (6H, m, 8-, Ar–H). More polar isomer: $R_{\rm f}$: 0.11 (*n*-hexane-AcOEt=5:1). IR ν (neat, cm⁻¹): 3400, 3303, 3230. ¹H NMR (500 MHz) δ : -0.02, 0.02 (each 3H, s, 2×CH₃), 0.12 (6H, s, 2×CH₃), 0.815, 0.822 (each 9H, s,

 $2 \times^{t}$ Bu), 1.31, 1.42, 1.47 (each 3H, s, $3 \times$ CH₃), 4.09 (1H, d, J=3.0 Hz, 3-H), 4.86 (1H, s, 1-H), 5.06 (1H, d, J=3.0 Hz, 4-H), 5.22 (2H, s, PhCH₂O), 6.61 (2H, br, NH₂), 6.82 (1H, d, J=8.5 Hz, 6-H), 7.12 (1H, dif. t, J=8.5 Hz, 7-H), 7.28–7.40 (6H, m, 8-, Ar–H).

4.1.24. (±)-(1*R*,2*R*,3*R*,4*S*)-5-Benzyloxy-3,4-bis(*tert*-butyldimethylsilyloxy)-1,2-dimethylmethylenedioxy-9-diazo-2methyl-1,2,3,4-tetrahydrofluorene (34). Ag₂O (2.5 mg, 1.1×10^{-2} mmol) was added to a suspension of **33** (2.5 mg, 3.8×10^{-3} mmol) and Na₂SO₄ (10 mg) in dry Et₂O (0.5 mL) at 0°C. After stirring at 0°C for 30 min, 0.3% KOH in CH₃OH (0.2 mL) was added. After stirring at 0°C for 1 h and then at rt for 2 h, Et₂O (2 mL) was added. The precipitates were filtered off through Celite pad and washed with Et₂O. The filtrate and the washings were combined and evaporated. Purification of the residue by preparative TLC (n-hexane-AcOEt=10:1) gave 34 as a colorless oil (1.6 mg, 65%). IR ν (CHCl₃, cm⁻¹): 2067. ¹H NMR (600 MHz) δ : -0.10, 0.01, 0.11, 0.12 (each 3H, s, 4×CH₃), 0.79, 0.81 (each 9H, s, $2 \times^{t} Bu$), 1.14, 1.46, 1.48 (each 3H, s, $3 \times CH_{3}$), 4.08 (1H, d, J=2.8 Hz, 3-H), 4.93 (1H, s, 1-H), 5.16 (1H, d, J=2.8 Hz, 4-H), 5.17, 5.25 (each 1H, d, J=14.0 Hz, PhCH₂O), 6.63 (1H, dd, J=6.6, 2.2 Hz, 8-H), 7.03–7.06 (2H, m, 6-, 7-H), 7.30 (1H, dif. t, J=7.0 Hz, 4'-H), 7.34 (2H, dif. t, J=7.4 Hz, 3'-, 5'-H), 7.39 (2H, dif. d, J=6.9 Hz, 2'-, 6'-H). ¹³C NMR (150 MHz) δ : -4.58, -4.57, -3.8, -3.6, 18.0, 18.3, 25.3, 25.9, 25.9, 28.7, 29.7, 30.0, 66.1, 69.0, 69.9, 76.2, 82.1, 106.8, 111.5, 111.7, 122.3, 124.0, 124.4, 127.8, 128.3, 128.6, 137.3, 648.3395 154.5. HRFABMS m/z: (Calcd for C₃₆H₅₂N₂O₅Si₅: 648.3415).

Acknowledgements

This research was partially supported by Scientific Research Grants from the Ministry of Education, Science, Sports and Culture of Japan.

References

- (a) Ito, S.; Matsuya, T.; Omura, S.; Otani, M.; Nakagawa, A.; Takeshima, H.; Iwai, Y.; Ohtani, M.; Hata, T. *J. Antibiot.* **1970**, *23*, 315–317. (b) Hata, T.; Omura, S.; Iwai, Y.; Nakagawa, A.; Otani, M.; Ito, S.; Matsuya, T. *J. Antibiot.* **1971**, *24*, 353–359.
- 2. Recent review: Gould, S. J. Chem. Rev. 1997, 97, 2499-2509.
- (a) Omura, S.; Nakagawa, A.; Yamada, H.; Hata, T.; Furusaki, A.; Watanabe, T. *Chem. Pharm. Bull.* **1971**, *19*, 2428–2430.
 (b) Omura, S.; Nakagawa, A.; Yamada, H.; Hata, T.; Furusaki, A.; Watanabe, T. *Chem. Pharm. Bull.* **1973**, *21*, 931–940.
- 4. Furusaki, A.; Matsui, M.; Watanabe, T.; Omura, S.; Nakagawa, A.; Hata, T. *Isr. J. Chem.* **1972**, *10*, 173–187.
- Seaton, P. J.; Gould, S. J. J. Am. Chem. Soc. 1987, 109, 5282– 5284.
- Proteau, P. J.; Li, Y.; Chen, J.; Williamson, R. T.; Gould, S. J.; Laufer, R. S.; Dmitrienko, G. I. J. Am. Chem. Soc. 2000, 122, 8325–8326.
- 7. Seaton, P. J.; Gould, S. J. J. Antibiot. 1989, 42, 189-197.
- 8. The numbering of kinamycins was based on Ref. 2.

- Seaton, P. J.; Gould, S. J. J. Am. Chem. Soc. 1988, 110, 5912– 5914.
- Dmitrienko, G. I.; Nielsen, K. E.; Steingart, C.; Ming, N. S.; Willson, J. M.; Weeratunga, G. *Tetrahedron Lett.* **1990**, *31*, 3681–3684.
- Echavarren, A. M.; Tamayo, N.; Parades, M. C. *Tetrahedron Lett.* **1993**, *34*, 4713–4716.
- 12. Gould, S. J.; Tamayo, N.; Melville, C. R.; Cone, M. C. J. Am. Chem. Soc. **1994**, *116*, 2207–2208.
- 13. Mithai, S.; Weeratunga, G.; Taylor, N. J.; Dmitrienko, G. I. J. Am. Chem. Soc. 1994, 116, 2209–2210.
- (a) Hauser, F. M.; Zhou, M. J. Org. Chem. 1996, 61, 5722.
 (b) Gould, S. J.; Chen, J.; Cone, M. C.; Gore, M. P.; Melville, C. R.; Tamayo, N. J. Org. Chem. 1996, 61, 5723–5724.
- Many approaches to the synthesis of 4 and their analogues were carried out, but each cannot be adopted to the synthesis of 2 because the aromatized synthons for the D ring were employed. For examples: Ref. 14a. Mal, D.; Hazra, N. K. *Tetrahedron Lett.* 1996, 2641–2642. Williams, W.; Sun, X.; Jebaratnam, D. J. Org. Chem. 1997, 62, 4364–4369. Mohri, S.; Stefinovic, M.; Snieckus, V. J. Org. Chem. 1997, 62, 7072–7073.
- A preliminary communication: Kumamoto, T.; Tabe, N.; Yamaguchi, K.; Ishikawa, T. *Tetrahedron Lett.* 2000, 41, 5693–5697.
- Menger, F. M.; Chow, J. F.; Kaiserman, H.; Vasquez, P. C. J. Am. Chem. Soc. 1983, 105, 4996–5002.
- House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1969, 34, 2324–2326.
- Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011– 1013.
- Danishefsky, S.; Yan, C.-F.; Singh, R. K.; Gammil, R. B.; McCurry, Jr., P. M.; Fritsch, N.; Clardy, J. J. Am. Chem. Soc. 1979, 101, 7001–7008.

- 21. The numbering of 10-11 and 16-34 is based on that of fluorene.
- 22. The R value of the X-ray cystallographical analysis was 10.9%, even after refinement.
- Irie, H.; Katakawa, J.; Tomita, M.; Mizunao, Y. Chem. Lett. 1981, 637–640.
- 24. Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron 1984, 40, 2247–2255.
- 25. The relative stereochemistry of 25 was deduced from the downfield shift of 9-H compared to that of 24 in ¹H NMR spectra (5.02–5.69 ppm). A similar relation between 22 and 23 was also observed (5.40–5.70 ppm).
- The hydroxy-directed dihydroxylation of cyclic allylic alcohols giving *cis,cis*-triols was reported: Donohoe, T. J.; Moore, P. R.; Waring, M. J. *Tetrahedron Lett.* **1997**, *38*, 5027–5030.
- 27. Use of OsO_4 -NMO system resulted in recovery of 26.
- 28. The diastereoselectivities of 27 was 90%.
- 29. Moss, R. A.; Funk, J. D. J. Chem. Soc. (C) 1967, 2026-2027.
- 30. Diazoindene showed an absorption maximum at 2068 cm⁻¹ due to the diazo function in the IR spectrum (Rewicki, D.; Tuchscherer, C. Angew. Chem. Int. Ed. Engl. 1972, 11, 44–45) and a signal attributable to the carbon bonded to the diazo group at 67.1 ppm in the ¹³C NMR spectrum (Duthaler, R. O.; Förster H. G.; Roberts, J. D. J. Am. Chem. Soc. 1978, 100, 4974–4979).
- Ohrai, K.; Kondo, K.; Sodeoka, M.; Shibasaki, M. J. Am. Chem. Soc. 1994, 116, 11737–11748.
- 32. The product was composed of **24** and an isomeric monoketal in a ratio of ca. 10:1.
- HRFABMS of the ca. 1:1 mixture, *m*/*z*: 651.3607 (Calcd for C₃₆H₅₅N₂O₂Si₂: 651.3650).